Code No: 121AB

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech I Year Examinations, October/November - 2020 **MATHEMATICS-I**

(Common to CE, EEE, ME, ECE, CSE, EIE, IT, ETM, MMT, AE, AME, MIE, PTM) Time: 2 hours Max. Marks: 75

Answer any five questions All questions carry equal marks

1.a) Show that the Eigen values of a skew-Hermitian matrix are purely imaginary or zero.

b) Show that the matrix 0 0 i is unitary. Find the Eigen values and Eigen vectors.

0

[8+7]

Reduce the quadratic form $2x_1x_2 + 2x_1x_3 + 2x_2x_3$ to canonical form. 2.a)

 $0 \quad 2b$ С

Determine the values of a, b, c when a bb) -c is orthogonal.

[8+7]

- State and verify Rolle's theorem for the function $f(x) = x^{2m-1}(a-x)^{2n}$ in (0, a). 3.a)
 - Show that $h < e^h 1 < he^h$ for $h \ne 0$. b)

[8+7]

4.

Prove that $\frac{\pi}{6} + \frac{1}{5\sqrt{3}} < \sin^{-1}\frac{3}{5} < \frac{\pi}{6} + \frac{1}{8}$. [15] Evaluate $x^2 + y^2$ and dy over the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ in the first quadrant by using the 5.a)

- $r^3 d\theta$ over the area included between the circles $r = 2 \sin \theta$ and b) **Evaluate** $r=4\sin\theta$ [8+7]
- xyzdxdydz over the positive octant of the sphere $x^2 + y^2 + z^2 = a^2$. 6. **Evaluate**

[15]

- Solve by the method of variation of parameters $D^2 2D$ $y = e^x sinx$. 7. [15]
- Solve the system of equation using Laplace transform 8.

$$2\frac{dx}{dt} + \frac{dy}{dt} - x - y = e^{-t}; \frac{dx}{dt} + \frac{dy}{dt} + 2x + y = e^{t}, x \ 0 = 2, y \ 0 = 1.$$
 [15]

---00O00---